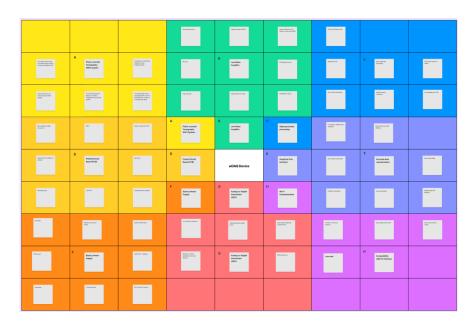
# wDAQ: Design (Part 1)

TEAM 19: LISA, ADAM, HENRY, VAUGHN CLIENT: AVISHEK DAS FACULTY ADVISOR: PROF. MANOJIT PRAMANIK

#### Project Overview

**Project:** Wireless Data Acquisition (wDAQ) system to capture/transmit high-frequency analog signals to a device in real time using Wi-Fi technology


- The DAQ will amplify a 1 mV analog input signal to approximately 1-2 V before digitizing it
  O ADC will have a 12-bit resolution
- Wi-Fi will be used to wirelessly transmit signals to a computer
  - o Bluetooth can be used for signal transmission, but has a significantly lower data transfer rate than Wi-Fi
- The DAQ will be fabricated on a small PCB with surface-mount components
- A graphical user interface (GUI), written in LabVIEW, will be used to analyze data



#### Ideation

Our team created a Lotus Blossom in Figma with eight of our device's key needs

- Amplification and Filtering of Input Signal
- High-Speed Data Processing
- Graphical User Interface (GUI) Software
- Wireless Data Communication
- Analog-to-Digital Conversion (ADC)
- Wireless Power Supply
- Printed Circuit Boards (PCBs)
- Photoacoustic Tomography (PAT) System Application



The image on the right shows the layout of the Lotus Blossom, with each color representing a different one of the eight "needs" and additional notes corresponding to each need

#### Ideation

For each central need, we formulated four to eight different relevant needs, issues, or ideas

- <u>Amplification and Filtering</u>: High gain (amplification factor), low signal degradation, fast operating speed, and implementation on a small IC chip
- <u>High-Speed Data Processing</u>: Capture inputs at a high frequency, convert between parallel and serial data, and interface between the ADC and MCU (microcontroller)
- o **<u>GUI</u>**: Accessible LabVIEW program for users of multiple skill levels
- o **Wireless Communication:** Seamless laptop connectivity and high-speed data transfer
- ADC: 12-bit resolution with differential inputs at 100M samples per second
- **Power Supply:** Wireless technology that can be charged quickly
- **PCBs:** Header pins and SMA-type ports (for connections)
- **PAT System:** 10 to 20 copies of our device in a rotating configuration

#### Potential Solution

Promising solution that meets our requirements: Wi-Fi connected device with rechargeable battery power supply and low-noise amplifier technology

- Using Wi-Fi to wirelessly connect to software, we can transmit data at over 100 Megabits per second
  - Bluetooth has a much slower data transfer rate
- Rechargeable battery is a cheap and compact wireless power source
  - Lithium-ion, NiMH (Nickel-metal hydride), and NiCd (Nickel Cadmium) are all good rechargeable battery options
  - The battery could be charged externally or within the device with a USB-C charging connection
- Low-noise amplifier ensures we will meet our amplification & filtering requirements
  - High gain (amplification by a factor of 1000)
  - High frequency range (compatible with our radio frequency applications)
  - Minimal degradation of signal-to-noise ratio (SNR) how clean the signal appears

### Market Research: IkaLogic



Similar Product: <u>IkaScope WS200</u>

- Connects wirelessly to computers and mobile devices to display signals
- Wi-Fi connected
- Battery lasts up to a week between charges
- Similar specifications to our design
- Priced at around 250 USD



IkaLogic partners with major distributors (like DigiKey) to distribute products

Small size of company (less than ten employees) limits the scope of its operations



## Market Research: Digilent

Similar Product: <u>Analog Discovery 3</u>

- Data Acquisition system that connects to computers via USB Type-C
- o Currently used by some ISU ECpE labs
- o Can also be used to generate signals and waveforms
- Compatible with MATLAB, LabVIEW, and NI WaveForms app

• Priced at \$379.00



Owned by National Instruments (NI), a multinational hardware & software company

Devices are compatible with most new and existing technologies

Offers discounts for academic and university users

#### Market Research: Pokit



Similar Product: Pokit Pro

- Uses Bluetooth to connect to software
- Powered by USB-C rechargeable battery
- Bandwidth is limited to 200 kHz
- Sampling rate and input specifications are like our device



Company has other products on the market, including a more compact version of Pokit Pro

Limited bandwidth of DAQ device makes it useless for RF (radio frequency) applications

Bluetooth connection has a much slower data transfer rate than Wi-Fi (our choice)

#### Conclusions

By visualizing our needs with a Lotus Blossom Diagram and narrowing down our ideas to formulate a potential solution, we have a clearer idea of what to expect for the project

By performing market research and analyzing the pros & cons of different companies offering similar products, we can understand the areas where we excel or fall behind competitors • Some of the companies specialize in one or two products, while others are more versatile

- The products offered by the companies differ widely in price point
- We can incorporate many existing technologies from these devices as well as create new ones
- We can strive to improve on things like battery life, speed, and accuracy with our product
- By using widely available resources, we can create a more accessible and economical device